Structural Design for Residential Construct on

Cynthia Chabot, P.E. Chabot Engineering www.chabotengineering.com

What is residential construction?

- One and two family dwellings
- Typically wood framed construction in this part of the world

What does a structural engineer typically do?

- Analyze load paths to ensure they go down to a foundation
- Connections connections connections
- Roof, floor, and wall assemblies
- Beams, columns, headers
- Lateral load resisting system (diaphragms, shear walls, collectors, struts, anchorage, overturning analysis)
- Footings/foundations

Drawing by Americad

What does a structural engineer typically not do?

- Land surveying
- Geotechnical engineering
- Layout of rooms
- Room sizes, ceiling heights
- Egress, ventilation & lighting
- Stairway geometry
- Mechanical, electrical, & plumbing
- Fire protection
- Energy efficiency
- Permitting

Gray areas

- Chimneys
- Moisture protection
- Termite mitigation
- Drainage

All you need to know about structure

- Equal and opposite forces
- What is up must come down
- The wind will always blow it over

Code Requirements

• Building Codes:

- CT: BOCA National Building Code 1996/IRC 2003
- MA: State Building Code, 6th Edition (Ch. 36, 1&2 family dwellings)
- NH: IBC 2000/1&2 family dwellings per town
- RI: IBC 2003/IRC 2003
- VT: BOCA National Building Code
- Minimum standard
- Residential code prescriptive vs. engineered

Parts of structure

- Connections, connections, connections
- Beams, columns, headers
- Diaphragms, shear walls, collectors, struts, anchorage (lateral force resisting system)
- Foundations to hold it all up
- Soil is part of the structure too

What we don't use as part of the structure

- We do not use the plywood as a T beam to increase the capacity of the joists – instead the plywood is the diaphragm to transfer lateral loads to shearwalls
- Interior partitions (excluding center bearing wall) are dead loads only
- The gypsum board inside is dead load
- Interior walls not used to resist horizontal forces from wind.

Ground Snow Loads

IBC 2003

Snow Loads

Note a 15% increas	se in the allowable
capacity of woo	od for loads that
include snow, v	which is a short-term
load	
Slope Cs	- ROOF SNOW
7/12 0.99	
8/12 0.91	
9/12 0.83	Note that roofs exceeding an angle of
10/12 0.75	30 degrees may reduce the
<u>11/12</u> 0.69	ground snow load.
<u>12/12</u> 0.63	-

Wind Loads

Zone	V ₃₀ (mph)
(Western Mass.)	70
(Central Mass.)	80
(Eastern Mass.)	90
	Zone (Western Mass.) (Central Mass.) (Eastern Mass.)

Table 1611.3, Wind velocity "fastest mile" 30 feet above the ground, exposure C Mass. State Code, 6th Ed.

Reference wind pressures

	Zone	Pressure (psf)
1	(Western Mass.)	12
2	(Central Mass.)	17
3	(Eastern Mass.)	21

TABLE 1609.3.1							
EQUIVALENT BASIC WIND SPEEDS ^{a,b,c}							

V_{3S}	85	90	100	105	110	120	125	130	140	145	150	160	170	3-s
V_{fm}	70	75	80	85	90	100	105	110	120	125	130	140	150	Fas

3-second gust Fastest mile

Above, Figure 1609, Basic Wind Speed (3-second gust), 33 feet above ground, exposure C IBC 2003

Soil and Surchare

Seismic??

Dead Loads

Notching and Boring

LESSON LEARNED

Uniform loads ... good

Concentrated loads ... more of a challenge

SIMPLY SUPPORTED vs CONTINUOUS OVER SUPPORTS

2 simply supported beams

Shear diagram

Moment diagram

Higher shear stress and reaction to column compared to simple span

> Stress reversal; compression at the top, tension at the bottom

Restraint against twisting & lateral stability

- d/b < 2
 no lateral support required
- $2 < d/b \le 4$ ends held in position
- $5 < d/b \le 6$ laterally restrain ends and at intervals along length of less than 8ft. and compression edge held in position with sheathing
- $6 < d/b \le 7$ laterally restrain ends both compression and tension sides shall be supported for the entire length.

Connections of multiple LVLs

Follow the load path due to gravity

Follow the load path due to gravity

The simple house framing

Rafter/Ceiling Joist Heel Joint Connection

Redundancy

- Unlike bridges, houses have many structural members.
- Credit is provided for repetitive members of joists

Laterial force resisting system

- Horizontal Diaphragm (plywood subfloor)
 - Collectors
 - Cords
- Vertical Diaphragm (exterior wall)
 - Strut
 - Cords
- The building code provides some information on LFRS – see WFCM.

Follow the load path due to wind

North Wind affect to Horizontal Diaphragm

North Wind Horizontal Diaphragm affects to West/East Shearwalls

A closer look at the West Shearwall

West Wind affect to Horizontal Diaphragm

West Wind Horizontal Diaphragm affects to North/South Shearwalls

A closer look at the North Shearwall

Wind forces normal to the wall

Designed from top to bottom Constructed from bottom to top

Shearwall anchorage

Plywood diaphragm details

 12" spacing in the field

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .
 <

.

6" spacing at supported edges

Plywood on exterior walls

Plywood installation to exterior walls

Foundation bracing (walk-out basement)

Foundation drainage

Addition on back of house

Adding a shed dormer

Adding a second floor

Closing in a 3-season porch

- Consideration of added sail area.
- May need to reduce size of windows or provide a connection that will not translate at the roof.
- Don't forget the roof diaphragm.

Decks

- Research at Virginia Tech. University, Department of Wood Science and Forest Products (see resources, "Load-Tested Deck Ledger Connection")
- Loads on decks consideration of size new codes will require 100 psf for decks over 100 SF.
- Snow drift & sliding?
- Firewood?
- Planters?
- Long-term loading such as planters more critical than snow

Pressure Treated Wood

- The Z-Max is recommended by Simpson Strong-tie
- Stainless steel may be an option
 - No posted connection capacities
 - Limited available types
 - ~4X\$

Built-up Column

2-2x4 studs fastened together for a column

¥

1-4x4 column

~ 60% less capacity

They don't build 'em like that anymore...

because It's against the law.

Old house framing

Resources

- www.ChabotEngineering.com (slide presentation location)
- Massachusetts State Building Code, 6th Edition, 780 CMR
 http://www.mass.gov/bbrs/NEWCODE.HTM web version; http://www.mass.gov/bbrs/NEWCODE.HTM web version; http://www.sec.state.ma.us/spr/sprcat/agencies/780.htm order a copy
- "Wood Frame Construction Manual for One- and two-family dwellings", American Forest & Paper Association & American Wood Council http://www.awc.org/Standards/wfcm.html
- "Design of Wood Structures", D. Breyer, K. Fridley, & K. Cobeen
- "Design/Construction Guide Diaphragms and Shear Walls", APA The Engineered Wood Association
 <u>http://www.apawood.org/level_b.cfm?content=pub_main</u>
- The Journal of Light Construction http://www.jlconline.com/
- "Load-Tested Deck Ledger Connection", The Journal of Light Construction, March 2004
- Fine Homebuilding http://www.taunton.com/finehomebuilding/index.asp
- International Building Code, 2003 http://www.iccsafe.org/
- International Residential Code, 2003 http://www.iccsafe.org/

Cynthia Chabot, P.E. Chabot Engineering Melrose, Massachusetts (781) 665-7110 (781) 665-7727 (fax) cchabot@chabotengineering.com